

HALF-WAVE VACUUM RECTIFIER

2AV2

Miniature type used as a high-voltage, low-current pulse-operated focus rectifier in color television receivers. The filament of the tube can be operated directly across the filament winding of the horizontaloutput transformer without a series voltage-dropping resistor. Outlines section, 6B: requires miniature 9contact socket

Filament Voltage (ac) Filament Current	0.225	volts ampere
Direct Interelectrode Capacitance (Approx.): Plate to Filament	0.8	\mathbf{pF}

Pulsed Rectifier

For operation in a 525-line, 30-frame system

MAXIMUM RATINGS (Design-Maximum Values)

Peak Inverse Plate Voltage# Peak Plate Current Average Plate Current	8250** 50 0.6	volts mA mA
CHARACTERISTIC, instantaneous Value Tube Voltage Drop for plate current of 1 mA	20	volts

Pulse duration must not exceed 15% of a horizontal scanning cycle (10 microseconds). ** Under no circumstances should this absolute value be exceeded; the dc component must not exceed 7000 volts.

Under no circumstances should the filament voltage be less than 1.53 volts or greater than 2.07 volts.

Refer to chart at end of section.	2B <i>7</i>
Refer to chart at end of section.	2BA2
Refer to chart at end of section.	2BJ2 2BJ2A
Refer to chart at end of section.	2BN4
Refer to type 6BN4A.	2BN4A
Refer to type 2BU2/2AH2	2BU2

12JB

HALF-WAVE VACUUM RECTIFIER

2BU2/ **2AH2**

Duodecar type used as a high-voltage rectifier to supply power to the anode of the picture tube in television receivers. Outlines section, 9B; requires 12-contact socket. Socket terminals 4, 10, and 11 may be used as tie points for components at or near heater potential. For high-voltage and X-ray safety considerations, refer to page 93. Heater: volts (ac/dc), 2.5; ampere, 0.33.

Flyback Rectifier

For operation in a 525-line, 30-frame system

MAXIMUM RATINGS (Design-Maximum Values)		
Peak Inverse Plate Voltage#	30000•	
Peak Plate Current	80	mA
Average Plate Current	1.5	mA
Heater Voltage: Absolute-maximum value	2.9	volts
Absolute-minimum value	2.1	volts
CHARACTERISTIC, instantaneous Value Tube Voltage Drop (Approx.), for plate current of 7 mA	60	volts
X-RADIATION CHARACTERISTIC		
X-Radiation, Maximum: Statistical value controlled on a lot sampling basis	0.5	mR/hr
# Pulse duration must not exceed 15% of a horizontal scanning cycle	(10	microseconds).

• The dc component must not exceed 24000 volts.

Caution—Operation of this tube outside of the maximum values indicated above may result in either temporary or permanent changes in the X-radiation characteristic of the tube. Equipment design must be such that these maximum values are not exceeded.

2CN3A	Refer to chart at end of section
2CW4	Refer to type 6CW4.
2CY5	Refer to type 6CY5.

GAS THYRATRON

Miniature type gas-tetrode thyratron intended for relay applications. Outlines section, 5C; requires miniature 7-contact socket.

MAXIMUM RATINGS (Absolute-Maximum Values)

Peak, before anode conduction

Average, during anode conduction

Peak Anode Voltage:

Grid-No. 2 (Shield-Grid) Voltage:
Peak, before anode conduction

Forward

Inverse

7BN

650

1300

-100

volts

volts

volts

volts

Heater Voltage (ac/dc) Heater Current	$^{6.3}_{0.6} \pm 10\%$	volts ampere
Cathode: Heating time prior to tube conduction	10	seconds
Heater-Cathode Voltage:	100 105	
Peak value	-100 + 25	volts
Grid No. 1 to anode	0.026	\mathbf{pF}
Input	2.4 1.6	pF pF
Output	1.0	рr
For conditions: dc anode volts = 100; grid-No. 1 square-pulse volts = 50; peak anode amp. during conduction = 0.5	0.5	μs
Deionization Time (Approx.): For conditions: dc anode volts = 125; grid-No. 1 volts = -100,		
grid-No. 1 resistor (ohms) = 1000 ; ac anode amp. = 0.1	35	μs
For conditions: dc anode volts = 125 ; grid-No. 1 volts = -10 ;	75	иs
grid-No. 1 resistor (ohms) = 1000, dc anode amp. = 0.1 Maximum Critical Grid-No. 1 Current with an anode-supply volts	10	μs
$(rms) = 460$, and average anode amp. $= 0.1 \dots$	0.5 8	μ A
Anode Voltage Drop (Approx.) Grid-No. 1 Control Ratio (Approx.) with grid-No. 1 resistor (meg-	8	volts
ohms) = 0: grid-No. 2 volts = 0	250	
Grid-No. 2 Control Ratio (Approx.) with grid-No. 1 resistor (meg-		
ohms) = 0; grid-No. 2 resistor (megohms) = 0; grid-No. 1 volts = 0	1000	
Relay and Grid-Controlled Rectifier Servi	ce	

Grid-No. 1 (Control-Grid) Voltage: Peak, before anode conduction Average, during anode conduction Cathode Current:	—10	volts volts
Peak Average Fault, for duration of 0.1 sec. max. Grid-No. 2 Current:	0.1	ampere ampere amperes
Average Grid-No. 1 Current:	+0.01	ampere
Average Ambient Temperature Range	+0.01 -75 to +90	ampere °C

Operational Range of Critical Grid-No. 1 Voltage.

TYPICAL OPERATING CONDITIONS FOR RELAY SERVICE

RMS Anode Voltage Grid-No.2 Voltage RMS Grid-No.1 Bias Voltage□ DC Grid-No.1 Bias Voltage Peak Grid-No.1 Signal Voltage Grid-No.1-Circuit Resistance Anode-Circuit Resistance#	0 5 5 1.0	6	volts volts volts volts volts megohm ohms
MAXIMUM CIRCUIT VALUE			

Grid-No.1-Circuit Resistance 10 megohms

■ Averaged over any interval of 30 seconds maximum.

□ Approximately 180° out of phase with the anode voltage.

Sufficient resistance, including the tube load, must be used under any conditions of operation to prevent exceeding the current ratings.

Refer to chart at end of section.	2D21W
Refer to type 6DS4.	2D\$4
Refer to type 6DV4.	2DV4
Refer to chart at end of section. For replacement use type 2AF4B/2DZ4.	2DZ4
Refer to chart at end of section.	2E5